Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films

نویسندگان

  • Yifei Yu
  • Chun Li
  • Yi Liu
  • Liqin Su
  • Yong Zhang
  • Linyou Cao
چکیده

Two dimensional (2D) materials with a monolayer of atoms represent an ultimate control of material dimension in the vertical direction. Molybdenum sulfide (MoS2) monolayers, with a direct bandgap of 1.8 eV, offer an unprecedented prospect of miniaturizing semiconductor science and technology down to a truly atomic scale. Recent studies have indeed demonstrated the promise of 2D MoS2 in fields including field effect transistors, low power switches, optoelectronics, and spintronics. However, device development with 2D MoS2 has been delayed by the lack of capabilities to produce large-area, uniform, and high-quality MoS2 monolayers. Here we present a self-limiting approach that can grow high quality monolayer and few-layer MoS2 films over an area of centimeters with unprecedented uniformity and controllability. This approach is compatible with the standard fabrication process in semiconductor industry. It paves the way for the development of practical devices with 2D MoS2 and opens up new avenues for fundamental research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Layer-controlled CVD growth of large-area two-dimensional MoS2 films.

In spite of the recent heightened interest in molybdenum disulfide (MoS2) as a two-dimensional material with substantial bandgaps and reasonably high carrier mobility, a method for the layer-controlled and large-scale synthesis of high quality MoS2 films has not previously been established. Here, we demonstrate that layer-controlled and large-area CVD MoS2 films can be achieved by treating the ...

متن کامل

Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques.

In recent years there have been many breakthroughs in two-dimensional (2D) nanomaterials, among which the transition metal dichalcogenides (TMDs) attract significant attention owing to their unusual properties associated with their strictly defined dimensionalities. TMD materials with a generalized formula of MX2, where M is a transition metal and X is a chalcogen, represent a diverse and large...

متن کامل

Scalable synthesis of uniform few-layer hexagonal boron nitride dielectric films.

Two-dimensional or ultrathin layered materials are attracting broad interest in both fundamental science and applications. While exfoliation can provide high-quality single- and few-layer flakes with nanometer to micrometer size, the development of wafer-scale synthesis methods is important for realizing the full potential of ultrathin layered materials. Here we demonstrate the growth of high q...

متن کامل

Uniform Growth of Sub-5-Nanometer High-κ Dielectrics on MoS2 Using Plasma-Enhanced Atomic Layer Deposition.

Regardless of the application, MoS2 requires encapsulation or passivation with a high-quality dielectric, whether as an integral aspect of the device (as with top-gated field-effect transistors (FETs)) or for protection from ambient conditions. However, the chemically inert surface of MoS2 prevents uniform growth of a dielectric film using atomic layer deposition (ALD)-the most controlled synth...

متن کامل

Process Control of Atomic Layer Deposition Molybdenum Oxide Nucleation and Sulfidation to Large-Area MoS2 Monolayers

Recent advances in the field of two-dimensional (2D) transition metal dichalcogenide (TMD) materials have indicated that atomic layer deposition (ALD) of the metal oxide and subsequent sulfidation could offer a method for the synthesis of large area two-dimensional materials such as MoS2 with excellent layer control over the entire substrate. However, growing large area oxide films by ALD with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013